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Geostatistics provides tools to model, estimate, map, and eventually predict spatial patterns of tree size and
growth. Variogram models and kriged maps were used to study spatial dependence of stem diameter (DBH), basal
area (BA), and 10-year periodic basal area increment (BAI) in an old-growth forest stand. Temporal variation of spa-
tial patterns was evaluated by fitting spatial stochastic models at 10-year intervals, from 1920 to 1990. The study area
was a naturally seeded stand of southwestern ponderosa pine (Pinus ponderosa Dougl. ex Laws. var. scopulorum)
where total BA and tree density have steadily increased over the last decades. Our objective was to determine if
increased stand density simply reduced individual growth rates or if it also altered spatial interactions among trees.
Despite increased crowding, stem size maintained the same type of spatial dependence from 1920 to 1990. An
isotropic Gaussian variogram was the model of choice to represent spatial dependence at all times. Stem size was
spatially autocorrelated over distances no greater than 30 m, a measure of average patch diameter in this forest
ecosystem. Because patch diameter remained constant through time, tree density increased by increasing the num-
ber of pine groups, not their horizontal dimension. Spatial dependence of stem size (DBH and BA) was always
much greater and decreased less through time than that of stem increment (BAI). Spatial dependence of BAI was close
to zero in the most recent decade, indicating that growth rates in 1980-1990 varied regardless of mutual tree posi-
tion. Increased tree crowding corresponded not only to lower average and variance of individual growth rates, but
also to reduced spatial dependence of BAI. Because growth variation was less affected by intertree distance with greater
local crowding, prediction of individual growth rates benefits from information on horizontal stand structure only if
tree density does not exceed threshold values. Simulation models and area estimates of tree performance in old-growth
forests may be improved by including geostatistical components to summarize ecological spatial dependence.

BionDpI, F., MYERS, D.E., et AvERy, C.C. 1994. Geostatistically modeling stem size and increment in an
old-growth forest. Can. J. For. Res. 24 : 1354 -1368.

La géostatistique fournit les outils pour modéliser, estimer, cartographier et éventuellement prédire la distribution
spatiale des arbres selon leur diameétre, leur surface terrigre et leur accroissement périodique. La variation tem-
porelle de la corrélation spatiale est évaluée entre 1920 et 1990 par période de 10 ans. Le peuplement €tudié est une
vieille futaie de Pinus ponderosa Dougl. ex Laws. du sud-ouest des Etats-Unis issue de régénération naturelle et dont
la surface terriére et la densité ont augmenté de fagon soutenue au cours des derniéres décennies. 1.’ objectif consiste
a déterminer si, tout en réduisant 1’accroissement des arbres individuels, I’augmentation de la densité modifie aussi
leur corrélation spatiale. Le variogramme construit révele que la structure spatiale de la futaie étudi€e n’a pas
changé entre 1920 et 1990. II révele aussi le regroupement des arbres par bouquets dont le diameétre moyen est de
30 m. Le diameétre des bouquets demeurant constant dans le temps, I’augmentation de la densité est donc causée par
I’augmentation du nombre de paquets et non par I’augmentation de leur diametre. La corrélation spatiale de la
taille des arbres reste toujours supérieure a celle de leur accroissement. Elle diminue avec le temps, mais moins
vite que celle de leur accroissement. La faible corrélation spatiale de 1’accroissement observée a la derniére décennie
montre que I’accroissement varie indépendamment de la localisation des arbres dans le bouquet. I augmentation de
la densité correspond non seulement & la diminution de la moyenne et de la variance de 1’accroissement, mais
aussi & la réduction de sa corrélation spatiale. Sachant que plus la densité augmente, moins 1’accroissement de
I’abre individuel dépend des distances avec ses voisins dans le bouquet, 1’apport de la distribution spatiale des
arbres dans la futaie a la prédiction de leur accroissement devient nul lorsque la densité dépasse un maximum cri-
tique. Les modeles de simulation spatio-temporelle de la croissance des futaies peuvent étre améliorés par I'intégration
des informations sur la corrélation spatiale en faisant appel a la géostatistique.

[Traduit par la rédaction]

Introduction

Estimation and mapping of forest resources is an inescapable
premise of management, planning, and research. Time and cost

'Author to whom all correspondence should be addressed.
Current address: Scripps Institution of Oceanography, Geological
Research Division, University of California, La Jolla, CA 92093-
0215, U.S.A.

Printed in Canada / Imprimé au Canada

constraints do not usually allow exhaustive measurements;
hence, sampling schemes need to be designed and imple-
mented to estimate population values (Husch et al. 1982).
Because foresters deal with spatially distributed samples
and variables, they have long been aware that spatial cor-
relation violates common statistical assumptions, e.g., inde-
pendence of observations (Matérn 1960; Clutter et al. 1983).
Analyses of forest structure and dynamics that incorporate,
rather than exclude, information on spatial variability are
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bound to provide a more accurate description of reality. More-
over, estimating the amount of variation due to spatial depen-
dence at different scales provides a basis for designing effec-
tive experiments (Jeffers 1982). Mapping often requires
interpolation of available sample points to estimate values at
unsampled locations and compute spatial averages. Of all
interpolation techniques, kriging is the best linear unbiased
estimator. Kriging allows declustering of data points and it
provides an estimate of mapping error. Most importantly,
kriging incorporates information on spatial dependence, or
continuity, of the variable being mapped, and is fully sup-
ported by regionalized variable theory, also known as geo-
statistics (Matheron 1963, 1965). Isaaks and Srivastava
(1989) and Cressie (1991) provide details of geostatistical
theory, methods, and applications.

Regionalized variables are spatially correlated to one another
over short distances, but independent of one another over
large distances. This approach has proven both flexible and
powerful for answering research and management questions
in the spatial domain. From its original application in ore
exploration and mining (Krige 1966), geostatistics has found
applications in a number of disciplines, including geology
(Olea 1977), soil science (Burgess and Webster 1980a, 19805b),
remote sensing (Carr and Myers 1984), pollution studies
(Lefohn et al. 1987), ecology (Robertson 1987), phytopathology
(Lecoustre et al. 1989), geography (Oliver et al. 1989a, 19895),
hydrology (American Society of Civil Engineers 1990a, 1990b),
entomology (Liebhold et al. 1991), climatology (Bigg 1991),
and meteorology (Hevesi et al. 1992q, 1992b). Rossi et al.
(1992) provide an extensive review of geostatistical models
to interpret spatial dependence in ecological studies. The
potential of regionalized variable theory for forestry appli-
cations has not yet been fully exploited. Matérn (1960) sup-
plied a rigorous and extensive treatment of the theory, and
used correlograms to examine problems in forest sampling.
Samra et al. (1989) used variograms to analyze spatial het-
erogeneity of tree height after 1, 2, and 3 years of growth
in a Melia azedarach L. plantation. Cohen et al. (1990) ana-
lyzed conifer canopy structure by computing variograms from
digitized aerial video images. Current research efforts on
linking point processes to watershed and landscape processes
include GIS (geographical information system) models (Band
et al. 1991; Baker 1992), but have not yet employed geo-
statistical representations of forest structure. Mandallaz
(1993) discussed geostatistical estimation methods to merge
airborne observations and ground-truth measurements in
forest inventories.

The space available for a tree to grow is determined by its
position with respect to nearby trees (Weiner 1988). For
instance, in southwestern ponderosa pine (Pinus ponderosa
Dougl. ex Laws. var. scopulorum), intraspecies competition
for resources reduces growth rates of dominant pines (Biondi
et al. 1992) and makes them less responsive to environ-
mental variations (Sutherland et al. 1991). However, does
increased stand density simply reduce growth rates or does
it also alter spatial interactions among trees? In this article,
we used geostatistics to test for spatial trends, directional
patterns, and temporal modifications of spatial dependence.
We fitted spatial stochastic models to ground measurements
of tree size and increment at 10-year intervals, from 1920 to
1990. The study area was a naturally seeded, old-growth
forest undergoing endogenous modification of its horizontal
and vertical structure.
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Southwestern ponderosa pine stands have changed con-
siderably since European settlement a few decades ago (Moir
and Dieterich 1988). Until the end of the 19th century, stand
dynamics in this relatively arid environment used to be
primarily controlled by fire (Weaver 1951; Dieterich 1980).
Frequent, low-intensity fires spread erratically and burned
surface materials without reaching the canopy. Fire con-
trolled vegetation structure by producing a patchy pattern
of surviving trees across the landscape (Cooper 1960; White
1985). Mortality in old trees was caused primarily by light-
ning, a frequent phenomenon and a natural cause of fire in
the Southwest (Schubert 1974). Around the 1870s, after
European settlement, domestic livestock were introduced in
the pine forest. Overgrazing and trampling by cattle and
sheep depleted fuels and reduced competition of herbaceous
understory with pine seedlings. Lack of fuels and active
fire suppression, which began at about 1910 in north-central
Arizona, reduced the thinning effect that fire once had on pine
regeneration (Madany and West 1983; Savage and Swetnam
1990). Reduced fire frequency, favorable climatic condi-
tions, and good seed crops resulted in abundant pine regen-
eration during the 20th century (Pearson 1950). Today many
old-growth ponderosa pine stands are multistoried, even
though age or size classes still occur in a mosaic pattern
(Kaufmann et al. 1992). The seedlings that established in the
early 1900s have grown into dense pole stands where basal
area exceeds 40 m%ha, density reaches about 2000 stems/ha
and total crown cover exceeds 70% (Covington and Moore
1991). Accurate knowledge of spatial and temporal patterns
is needed to inform silvicultural guidelines and management
decisions for long-term sustainability of these and other
old-growth forests.

Materials and methods

Study area

The Gus Pearson Natural Area, located along U.S. Highway
180, about 15 km northwest of Flagstaff, Ariz., is one of the
first Research Natural Areas established in the United States
(Avery et al. 1976). It is included in the Fort Valley Experimental
Forest, within the Coconino National Forest, Coconino County.
Geographical coordinates for the approximate center of the area
are 35°16'11"N and 111°44'30"W; elevation is 2230-2260 m.
Climate, topography, soil parent material, soil type, biota, and dis-
turbance history of the Gus Pearson Natural Area are relatively
homogeneous (Avery et al. 1976; White 1985). Climate is char-
acterized by cold and wet winters, late spring droughts, and cool
summers with frequent thundershowers. Over the 82-year period
from 1909 to 1990, annual precipitation at the study area aver-
aged 573 mm and mean annual temperature averaged 6°C.
Monthly precipitation averaged 15 mm in June, the driest month,
and 83 mm in August, the wettest month. Based on mean monthly
temperatures, January is the coldest month (average of —3.7°C)
and July is the warmest (average of 17.0°C). Topography is level
to very gentle, with an average slope and exposure of about 5%
and 182°, respectively. Bedrock is formed by late Tertiary lava
flows and soils consist of montmorillonitic clay-loams with high
moisture-holding capacity. Some small rock outcrops are present,
but the area has the potential of being fully covered by trees.

The Gus Pearson Area is an unthinned, unburned, uneven-
aged, pure, old-growth stand of southwestern ponderosa pine.
It is an 800 X 400 m permanent plot divided in twenty-nine
100 X 100 m subplots plus five smaller subplots. Only plots
1-29 were considered because plots 30-34, the ones closest to
the Fort Valley Experiment Station, had been thinned in the past.
When it was established in 1920, all pines with diameter at
breast height (1.3-1.5 m; DBH) above 8.9 ¢cm (3.5 inches) were
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Fi16. 1. Map of pines included in the 1920 (N = 424) and 1990 (N = 590) forest inventory of the study area. Circle diameter is pro-
portional to stem diameter and is on a scale different from stem coordinates. The location of pines included in all the 1920-1990
forest inventories is also shown (N = 308; circle diameter is proportional to stem DBH in 1990).

identified by a metal tag with plot and tree number. The Forest
Service has remeasured stem diameter at tag level every 5 years
from 1920 to 1960, and every 10 years from 1960 to 1990. The
1920-1970 inventories of plots 1-14, 16, and 27 have already
been published (Avery et al. 1976). On those plots, ingrowth
was measured from 1925 to 1960 by placing new tags on pines
whose DBH had exceeded 8.9 cm since the last inventory. In
1970, the minimum diameter for inclusion in the inventory was
raised to 15.2 cm (6 inches) and ingrowth was measured only
on plots 15, 17, 23-26, and 28—-29, where ingrowth had not been

measured since 1940. Because of budget constraints, no ingrowth
was measured in 1980 and 1990. Three different kinds of tags can
be found on some large trees: current tags were first used in
1970. At that time, pines already dead were given the last num-
bers for the plot and their original number was assigned to a
new, nearby tree. Although this did not affect the data, it made
it impossible to obtain coordinates of trees that died before 1970.

At present, the inventory data base includes 12 DBH mea-
surements per tree, repeated throughout a 70-year period on a
total of 5724 pines. Data were converted from English to metric
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TaBLE 1. Statistics of stem diameter (DBH; cm)

cve a SPD*
Year N Mean  Variance (%) Minimum  Median Maximum (m) C, C/* (%)
Estimates based on all available trees for each year
1920 424 36.4 455.7 59 7.9 37.3 88.6 30 40 450 92
1930 479 35.9 458.1 60. 9.1 31.2 91.4 30 55 440 89
1940 505 36.9 444.5 57 9.4 30.5 94.0 30 60 - 420 88
1950 567 35.6 456.3 60 9.1 29.2 95.8 30 80 400 83
1960 605 36.1 441.2 58 104 29.7 97.5 30 90 380 81
1970 605 37.8 420.7 54 14.5 31.2 99.8 30 90 360 80
1980 594 38.6 399.5 52 152 32.0 100.8 30 90 330 79
1990 590 39.9 381.4 49 15.5 33.7 102.4 30 90 310 78
Estimates based on the same trees for each year
1920 308 43.5 352.1 43 15.2 43.4 88.6 30 70 310 82
1930 308 46.0 333.8 40 16.5 45.7 91.4 30 70 280 80
1940 308 48.0 320.5 37 17.5 47.8 94.0 30 75 270 78
1950 308 49.5 313.6 36 18.5 49.2 95.8 30 80 255 76
1960 308 51.0 304.4 34 19.1 50.8 97.5 30 90 240 73
1970 308 52.1 302.6 33 19.3 52.2 99.8 30 95 230 71
1980 308 52.8 298.8 33 19.3 53.0 100.8 30 100 220 69
1990 308 53.8 296.2 32 19.3 54.0 102.4 30 100 215 68
“CV, coefficient of variation.
b, range of sample variogram.
“C,, nugget of sample variogram.
“¢,, sill of sample variogram.
‘SPD, spatial dependence, given by the ratio 100C,/(C, + C)).
TABLE 2. Statistics of stem basal area (BA; cmz/*rr)
Ccve a® Cy ¢’  SPD*
Year N Mean  Variance (%) Minimum Median Maximum (m) (X10%) (X10%) (%)
Estimates based on all available trees for each year
1920 424 4455 202432 101 15.6 347.8 1962.5 30 16 220 93
1930 479 436.7 211691 105 20.7 243.4 2088.5 30 23 220 91
1940 505 4514 218961 104 22.1 232.6 2209.0 30 30 210 88
1950 567 431.6 221310 109 20.7 213.2 2294 .4 30 40 200 83
1960 605 4355 223 653 109 27.0 220.5 2376.6 30 45 200 82
1970 605 4614 229368 104 52.6 243 .4 2490.0 30 45 205 82
1980 594 4724 226 256 101 57.8 256.0 2540.2 30 45 200 82
1990 590 493.1 225753 96 60.1 283.1 2621.4 30 45 195 81
Estimates based on the same trees for each year
1920 308 561.7 191 977 78 57.8 470.9 1962.5 30 33 185 85
1930 308 611.8 202598 74 68.1 522.1 2088.5 30 40 190 83
1940 308 655.0 210069 70 76.6 571.2 2209.0 30 45 195 81
1950 308 689.5 216 630 68 85.6 604.0 2294.4 30 50 195 80
1960 308 7249 221678 65 91.2 645.2 2376.6 30 55 195 78
1970 308 754.6 228204 63 93.1 681.2 2490.0 30 60 198 77
1980 308 772.2 229681 62 93.1 701.0 2540.2 30 65 195 75
1990 308 796.2 233927 61 93.1 727.7 2621.4 30 70 195 74

Note: See Table 1 (notes a—e) for definitions of statistics.
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units and checked for errors and inconsistencies. Stem basal
area (BA; cm?w) and 10-year periodic basal area increment
(BAL cm%1r) were computed from the repeated measurements of
stem DBH (cm). Negative increments were used to identify
errors. The original DBH values were also checked when either
the 5-year BAI exceeded 100 cm?/ or the 10-year BAI exceeded
200 cm®/w. Pre-1980 abnormal values on plots 1-14, 16, and
27 were compared with values listed in Avery et al. (1976). When-
ever possible, abnormal 1990 values were verified in the field. If
a pine was missing in 1980 and measured in both 1990 and
1970, the missing value was estimated. In 1990, maximum tree

size was 114.3 cm and the largest number of annual rings counted
on a single increment core was 615.

Subplot corners at the Gus Pearson Natural Area were accu-
rately mapped in 1991 by two registered surveyors using an
electromagnetic distance measuring (EDM) system (Whyte and
Paul 1985). The subplot corners were then used as reference
points to map all the tagged ponderosa pines included in a 100 X
400 m, north to south area formed by subplots 5, 12, 13,
and 20. Stem coordinates were first obtained as polar coordi-
nates using a staff compass and a measuring tape. They were
later converted into x—y coordinates using as reference point
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FiG. 2. Absolute histogram, box plot, and omnidirectional sample variogram for stem diameter (DBH) of pines included in the 1920
(N = 424), 1950 (N = 567), and 1990 (N = 590) forest inventory. The Gaussian variogram model for 1920 includes a graphical
representation of its nugget (C,), range {a), and total sill (C, + 0.95C)).

the southwest corner of the area. The Forest Service defined
subplots simply as a grid of smaller land units that did not dif-
fer in terms of vegetation-forming factors (Major 1951). Hence,
the four subplots were merged together in the final analysis.
Stem maps were checked in the field for possible errors and
were found accurate, on average, to the nearest meter. Maximum
intertree distance was 410.5 m among a total of 183 921 pairs.

Geostatistical analyses

Geostatistical methods are based on a fundamental assump-
tion: if a variable is observed at several spatial locations, its
estimate at any unsampled location should be most dependent
on the nearest observations. In other words, the correlation
between observations for pairs of locations decreases with increas-
ing distance between the locations. Dependence on nearby data
locations and estimation uncertainty are expressed mathemati-
cally by a random function model (Myers 1991). Let Z(x) denote
the value of the spatial variable at location x, x being a point
in two- or three-dimensional space. Each Z(x) is a random vari-
able, and the collection of such random variables (for every x
in a region of interest) is a random function. The spatial depen-
dence of these random variables is assumed to be a function of
the separation vector. Mathematically, the assumptions imposed
on Z(x) are

ElZ(x + d) — Z(x)] =0
0.5var[Z(x + d) — Z(x)] =y (d)

where E denotes expectation, d is the separation vector, var
means variance, and <y (d) is the variogram of Z(x). If v (d)
depends on the length of 4 but not on its direction, then Z(x)
and vy (d) are said to be isotropic. The use of random function
models for interpolating spatial data was introduced by Matérn
(1960) and Matheron (1963, 1965). Matérn referenced the vario-
gram, but used the covariance function and the correlogram,
graphical representations of the spatial (auto)covariance and
(auto)correlation, respectively. Matheron placed much more
emphasis on the variogram, which is based on weaker stationarity
assumptions (Myers 1989). The variogram is easier to estimate
than the covariance function or the correlogram because it does
not require a value for the mean of Z(x).

To clarify, Z(x) is a “model” for the variable of interest, and
v(d) is a “parameter” of the model. In general vy (d) is not known
a priori and must be estimated from the data. The sample vario-
gram is the simplest estimator of y (d) (Isaaks and Srivastava
1988; Myers 1991). The sample variogram is computed after
sorting all possible pairs of locations into classes by distance
and direction. The sample variogram value for a certain distance
and direction is the sum of squared differences between all pairs
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FiG. 3. Absolute histogram, box plot, and omnidirectional sample variogram for stem diameter (DBH) of pines always present in

the 1920-1990 inventories (N = 308).

of observations, x;, x,, which belong to the distance class r and
angle window 0, as follows:

N(r.0) )
> [Z2(x) - Z(x)F

ik

0.5

Y8 = N6e
Directional sample variograms are usually computed for 6 equal
to 0, 45, 90, and 135° with an angle tolerance of £22.5°. The
omnidirectional sample variogram is computed for 6 equal to
0° with an angle tolerance of +£90°. Sample variograms are then
plotted against distance to examine directional dependence
(anisotropy) and to choose a model for the variogram. Variogram
models are needed to solve the ordinary kriging equations; hence,
they must satisfy a form of positive definiteness. Valid vario-
gram models include the nugget, spherical, exponential, Gaussian,
and linear model; positive linear combinations of these models
may also be used. The distance at which the variogram model
reaches a constant value is called the range, and the constant
value is called the sill. The Gaussian and exponential models
reach the sill asymptotically; hence, their range is defined as
the distance at which the variogram value is 95% of the sill.
The linear model does not have a true range and sill but, rather,
the ratio of these two parameters is the slope of the line. The
nugget model corresponds to no spatial dependence, i.e., pure
randomness (Isaaks and Srivastava 1989).

The ordinary kriging estimator of a regionalized variable at
any unsampled location is a weighted sum of values at nearby
locations. The form of the estimator is the same for estimates
at a single point (point kriging) or for estimates of the average
value over an area (block kriging). The kriging weights are a
function of the unsampled location and are determined by impos-
ing two conditions on the estimator: (i) unbiasedness, and
(i) minimum variance of the estimation error. While all sampled
locations could be used to produce all estimates, it is custom-
ary to specify a search neighborhood that identifies data clos-
est to the unsampled location. The kriging variance, i.e., the
minimized variance of the estimation error, can be computed
using the kriging weights and represents a relative ranking of
model reliability. Public domain software (Englund and Sparks
1989) makes geostatistical tools accessible and inexpensive.

Spatial dependence of stem size and increment was analyzed
using two-dimensional variograms and ordinary block kriging.
Stem DBH, BA, and BAI were studied at 10-year intervals, from
1920 to 1990. To model both short- and long-range spatial depen-
dence, sample variograms were computed (i) for 1-m lags up
to a maximum distance of 24 m, (i{) for 2.5-m lags up to a max-
imum of 60 m, and (iii) for 4-m lags up to 96 m. Each sample
variogram was computed twice, first using all available trees
(N ranging from 424 in 1920 to 605 in 1960) and second using
only trees always present from 1920 to 1990 and with DBH
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(N = 424), 1950 (N = 567), and 1990 (N = 590) forest inventory.

larger than 15.2 cm in 1920 (N = 308). Because accurate
ingrowth records were lacking after 1960, we defined the restricted
sample to eliminate thickets of small pines from the analysis.
Then, by comparing results obtained using the general and the
restricted sample we evaluated the influence of ingrowth, i.e.,
increased number of small pines, on spatial dependence of stem
size and increment. Ordinary block kriging was used to esti-
mate average values over 5 X 5 m blocks. The search neigh-
borhood allowed a maximum of 20 and a minimum of three
nearest data points within a circular search area with maximum
search radius of 30 m (Englund and Sparks 1989).

Spatial and temporal variability were analyzed separately. Because
data were both spatially and temporally distributed, it might
seem that modeling space—time trends jointly would be more
appropriate. As pointed out in Rouhani and Myers (1990), there
are fundamental differences between spatial dependence and
temporal dependence that hamper modeling the joint correla-
tion structure. Because of the lack of a distance measure in
space-time, it is usually necessary to treat either the spatially
dependent variable separately at each time or the temporally
dependent variable separately at each location. In the case of
this data set, with many spatial locations but relatively few time
points, it was more reasonable to focus on the spatial variability
at each time point. The parameters of spatial variability were esti-
mated at each time using a nonrandom sample from a single

realization of the spatially dependent variable. Knowledge of
the parameter distribution required strong assumptions, which
could not be statistically tested from the data. The nonparamet-
ric, univariate Mann-Kendall test (Kendall and Gibbons 1990) was
used to evaluate monotone temporal trends of model parameters.
Assessing temporal dependence in geostatistical parameters by
means of the Mann—Kendall test provided a numerical value for
visually persistent tendencies with respect to time.

Results and discussion

Stand density increased between 1920 and 1990 (Fig. 1).
Estimates of stem size and increment based on all available
observations were affected by ingrowth records. Influx of
small pines increased the number of observations and
decreased median tree size from 1920 to 1950 (Tables 1
and 2). Mortality and lack of ingrowth records were mostly
responsible for the decreasing number of observations and
increasing average tree size from 1960 to 1990 (Tables 1
and 2). The Mann—Kendall test for N, mean and median of
DBH and BA from 1920 to 1990 was not highly significant
(p>0.034). Temporal trends in stem size were not affected
by ingrowth when described by DBH (Table 1) and BA
(Table 2) of trees always present and with DBH greater than
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15.2 cm in 1920 (the restricted sample, with N = 308 at all
times). Average size of the restricted sample constantly
increased from 1920 to 1990: the Mann—Kendall test for mean
and median of DBH and BA was equal to 1.00 ( p = 0.0005).
Size variability of the restricted sample steadily decreased:
the Mann-Kendall tests for the coefficients of variation
of DBH and BA were —0.98 (p = 0.0008) and —1.00
( p = 0.0005), respectively.

Stem size distributions were analyzed using absolute his-
tograms and box plots (Tukey 1977; Figs. 2-5). Although
minimum size increased between 1920 and 1990 (Mann—
Kendall test, p < 0.0018), the histogram shape for DBH
remained both bimodal and skewed to the right when based
on all available observations (Fig. 2). Ingrowth of small
pines in the 1930-1960 inventories contributed to main-
taining skewness of size distributions. When based on the
restricted sample, the histogram shape for DBH gradually
changed through time (Fig. 3). It was bimodal and skewed
to the right in 1920 because of a large amount of small
pines. It became more symmetrical, albeit slightly bimodal,
in 1990 because diameter increment was greater in smaller
trees, thus producing faster outgrowth from the smallest
size classes. Interestingly, the bimodal feature of the DBH

histogram in 1920 (Figs. 2 and 3) was caused by a large
number of pines with DBH from 10 to 20 c¢cm. This peak
in size frequency suggested that strong regeneration pulses
must have occurred in southwestern ponderosa pine forests
long before the “excellent 1919 seedling crop over most of
the Colorado Plateau” (Schubert 1974). Histogram shapes
for basal area (Figs. 4 and 5) were unimodal, but showed
changes in skewness that were consistent with those observed
for DBH.

Spatial dependence explained a large amount of stem size
variability. The directional and omnidirectional sample var-
iograms did not show evidence of spatial trend or anisotropy
(Isaaks and Srivastava 1989). At all times from 1920 to
1990, a Gaussian model plus nugget very closely represented
the omnidirectional sample variograms for DBH (Figs. 2
and 3) and BA (Figs. 4 and 5). In all cases, the model was
able to fit sample variograms computed using either 1.0-,
2.5-, or 4.0-m distance classes. For brevity, only figures of
sample variograms computed using 2.5-m classes were
included in this article. The variogram model was defined as

if d>0
if d=20

Co + C 1 — exp(-3d*/a")]

d:
vy (d) 0
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where v (d) is the variogram value for the inter-tree dis-
tance d, C, is the nugget, C, is the sill of the Gaussian com-
ponent, C, + C, is the total sill and a is the range of the
variogram (Fig. 2). The Gaussian model is usually best
suited for extremely continuous phenomena (Isaaks and
Srivastava 1989). Hence, pines located less than 5-10 m
from one another had extremely similar sizes. The para-
bolic behavior near the origin and the presence of an inflec-
tion point are unique to the Gaussian model. Using 1-m
lags to increase resolution at short distances, it was possible
to notice a stronger parabolic behavior near the origin, pro-

duced by the variogram reaching a minimum after 3-5 m,
and increasing at longer as well as shorter distances.

For modeling and simulation purposes, it was remarkable
how well the same variogram model could represent spa-
tial dependence of stem size, either DBH or BA, at different
spatial scales and at different points in time. Overall, vario-
gram models were affected marginally by ingrowth records,
and only in terms of nugget and sill estimates, not of model
type or range. The range of variograms for DBH and BA
was always 30 m (Tables 1 and 2, Figs. 2-5). Ordinary
kriging estimates of average BA over 5 X 5 m blocks
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TABLE 3. Statistics for 10-year basal area increment (BAI, cm*/)

cve a’ SPD*
Years N Mean  Variance (%) Minimum Median Maximum (m) C,S C“ (%)
Estimates based on all available trees for each year
1920-1930 424 438 787.0 64 0 39.0 181.3 30 410 370 47
1930-1940 479 374 586.3 65 0 33.0 177.8 30 350 230 40
1940-1950 505  29.6 467.6 73 0 24.4 142.2 30 280 180 39
1950-1960 567  30.3 411.9 67 0 26.7 1254 30 300 120 29
1960-1970 605 259 351.4 72 0 22.9 113.4 30 220 120 35
1970-1980 593 18.7 203.5 76 0 17.3 82.6 30 160 50 24
1980-1990 589  23.7 306.3 74 0 21.8 115.5 30 260 60 19
Estimates based on the same trees for each year

1920-1930 308  50.1 806.0 57 0 45.3 181.3 30 530 240 31
1930-1940 308  43.2 648.0 59 0 39.0 177.8 30 410 220 35
1940-1950 308 345 566.1 69 0 31.1 142.2 30 400 170 30
1950-1960 308 354 507.5 64 0 314 1254 30 400 110 22
1960-1970 308  29.7 492.7 75 0 26.0 113.4 30 400 100 20
1970-1980 308 17.6 243.6 89 0 15.0 82.6 30 220 30 12
1980-1990 308  24.0 403.0 84 0 21.5 115.5 30 400 10 2

NoTEe: See Table 1 (notes a—e) for definitions of statistics.

(Fig. 6) showed clearly the horizontal patchiness of the
stand, caused by a mixture of pine groups. Each group is
roughly even sized, i.e., formed by trees with similar size, but
nearby groups are uneven sized. The variogram range mea-
sured the average dimension of these pine groups. Although
pine density increased through time, the average dimension
of a pine group remained the same, being about 30 m in
1990 as it was in 1920. The consistency through time of
variogram models for DBH and BA, with or without ingrowth
records, provided strong evidence that size distributions
maintained basically the same spatial patterns from 1920
to 1990. Tree density increased by increasing the number
of pine groups, not their horizontal dimension.

The nugget, C,, of variogram models quantifies spatial
variability at near-zero distances, whereas the sill of the
Gaussian model component, C,, quantifies spatial depen-
dence. In variogram models of stem size, the nugget was
always much less than the sill of the Gaussian component
(Tables 1 and 2, Figs. 2-5). Because all variogram models
had a finite sill, it was possible to compute the percentage of
spatial variance explained by spatial dependence. This per-
centage was computed from the ratio C,/(C, + C,) and
provided a relative value of spatial dependence, useful for
making comparisons. Spatial dependence (SPD) of DBH
ranged from 68-78 to 82-92%, slightly less than SPD of
BA, ranging from 74-81 to 85-93% (Tables 1 and 2).
Whenever such a large spatial dependence exists, point and
area estimates of tree size greatly benefit by including infor-
mation on horizontal stand structure.

Spatial dependence of stem size gradually decreased
between 1920 and 1990 (Tables 1 and 2). The Mann—Kendall
test for SPD of DBH and BA ranged from —0.94 (p =
0.0015) to —1 (p = 0.0005). The time-related decrease in
SPD of stem size was mostly an effect of increasing nugget
(Mann-Kendall test, p < 0.0035) and of decreasing sill
{(Mann-Kendall test for C; of DBH was equal to —1.00, p =
0.0005). Small ponderosa pines form dense groups, or thick-
ets, where many intertree distances are less than 2.5 m, the
distance lag used in Figs. 2—5 and 7-8. An increase in the
number of small pines corresponded to an increase in near-

zero intertree distances, which presumably increased the
nugget term of variogram models. The increase in spatial
variability at near-zero distances with clustering of trees
had already generated the parabolic behavior observed in
sample variograms computed for 1.0-m distance classes.

Temporal patterns of stem growth rates (Table 3) esti-
mated using all available observations (Fig. 7) were similar
to those estimated using always the same trees (Fig. 8).
Individual growth rates decreased over time: the
Mann—Kendall test for mean and median BAI was —0.81
p = 0.0107). In the last decade, 1980-1990, mean and
median BAI of the restricted sample were less than half of
those in the first decade, 1920-1930 (Table 3). Variance of
10-year periodic basal area increment also decreased over
time (Mann-Kendall test = —0.90, p = 0.0043). Because
mean BAI decreased more through time than its variance, the
coefficient of variation for BAI increased over time (p <
0.0243). This was reflected by increased asymmetry of the
data distribution from 1920 to 1990 (Figs. 7 and 8). As
shown by BAI histograms based on trees always present
(Fig. 8), skewness to the right became stronger as growth
rates of more and more pines became smaller. The same
pattern appeared in BAI histograms based on all available
trees (Fig. 7) even though new, small pines kept entering
the inventories between 1930 and 1970 (Figs. 1-3, Table 1).
Therefore, the reduction of individual growth rates over
time was tied to increased pine density, which usually inten-
sifies intraspecies competition for resources (Biondi et al.
1992). Kriged estimates of average basal area increment
over 5 X 5 m blocks (Fig. 9) showed that reduction of
growth rates from 1920-1930 to 1980—-1990 was not spatially
clustered and was common to the entire stand.

Directional and omnidirectional sample variograms of
BAI showed no evidence of spatial trend or anisotropy.
A nugget plus Gaussian variogram model adequately
described spatial dependence of stem increment at all times
and distance lags (Figs. 7 and 8). Competitive interactions in
southwestern ponderosa pine forests concentrate below
ground (Cooper 1960, 1961) and are usually symmetrical, i.e.,
small trees compete with large trees (Biondi et al. 1992).
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Presumably, the isotropic structure of root systems in pon-
derosa pine and the ground flatness determined isotropic
competitive interactions, resulting in isotropic spatial depen-
dence of growth rates. The range of variogram models for
BAI was always 30 m, but even shorter ranges could be
considered, partly because of the limited amount of spatial
dependence. Considering that spatial variation of growth
rates was being modeled, the variogram range could be used
to represent the maximum distance spanned by intertree
competitive interactions. Therefore, average competitive radius
did not exceed average patch size. The absence of spatial
dependence beyond 30-m distances suggested a lack of spatial
variation in soil properties, which were found to be respon-
sible for spatial dependence in tree growth at scales larger
than any reasonable competitive radius (Samra et al. 1989).

Spatial dependence of stem increment was smaller and
decreased more through time than that of stem size (Table 3,
Figs. 7 and 8). Spatial dependence of BAI was 31-47% in
1920 and 2-19% in 1990. Omnidirectional sample vario-
grams for BAI “flattened out”, i.e., showed a decrease in
spatial dependence, after 1950. The nugget component of
variogram models for BAI was always greater than the sill
of the Gaussian component {Table 3). This indicated that

growth variation at short distances was not much different
from growth variation at long distances. The variogram model
for the 1980-90 period was almost a pure nugget model,
because the Gaussian component was quasi nonexistent
(Figs. 7 and 8). A pure nugget variogram model entails a
complete lack of spatial dependence, i.e., “the data value
at any particular location bears no similarity even to very
nearby data values” (Isaaks and Srivastava 1989, p. 307).
In these situations, knowledge of sample location does not
improve estimation of point values or area averages. In other
words, prediction of stem increment becomes independent of
mutual tree position.

Geostatistical models of stem increment, especially when
compared with models of stem size, indicated that increased
stand density during the 1900s not only reduced the mag-
nitude of stem growth rates but it also altered its spatial
patterns. At high densities, resources available to each pine
are not only a function of its mutual position with respect to
surrounding pines but also of its ability to compete, depend-
ing, for instance, on the sociological status of the tree, on its
genetic potential, and on its microsite, within or on the edge
of a patch. Separating the effects of competition, tree vigor,
microsite, etc. on growth variation was not the objective of
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our study. However, reduced spatial dependence of BAI
with increasing stand density strongly suggests that growth
variation is a function of intertree distance only when local
crowding does not exceed threshold values. Because crowd-
ing reduced the dependence of growth variation on mutual
tree position, prediction of individual growth rates cannot
rely on intertree distances alone. Further research should
estimate the time needed for a modification in spatial depen-
dence of growth rate to affect spatial patterns of tree size.

Conclusions

Geostatistical models provide tools to quantify spatial
scales of ecological patterns and processes. Spatial knowl-
edge is crucial to define unit areas of forest ecosystems that
are homogeneous with respect to a given variable or set of
variables. Definition of homogeneous areas leads to design-
ing optimal sampling schemes, applying efficient silvicultural
treatments, and reducing management costs, especially in
old-growth forests. Investigations on spatiotemporal trends
of tree size and increment in natural forests provide infor-
mation to form the basis of principles to guide general forest
management for protecting and improving biodiversity as
well as long-term forestry sustainability. For instance, deter-

mination of characteristic patterns of old-growth stand struc-
ture is useful in enhancing and restoring old-growth ecosys-
tems within managed landscapes (Mladenoff et al. 1993).
Furthermore, most ecological theories and models of vege-
tation composition and productivity assume, explicitly or not,
some spatial structuring. Much better simulations and pre-
dictions can be obtained by including spatial dependence
itself among the predictive variables (Legendre 1993).
Simulation models and area estimates of tree size and incre-
ment in naturally seeded forests will benefit by including
geostatistical components to summarize ecological spatial
dependence.

Modeling spatial dependence helped understanding the
mechanisms of site occupation in old-growth ponderosa pine
forests. In the last century, the structure of ponderosa pine
stands in the American Southwest has changed from an open
forest with scattered large trees to a more closed forest where
the gaps between and around large trees have been occu-
pied by thickets of small trees. In this study, spatial depen-
dence of tree size and increment was mostly related to stand
density because climate, topography, geology, soil and vege-
tation type, disturbance history, and anthropic manipulation
were homogeneous over the study area. We found that stem
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size of ponderosa pine behaves as a regionalized variable
and that the spatial distribution of stem size is autocorre-
lated over distances no longer than 30 m. The consistency
through time of variogram models used to represent spatial
dependence of DBH and BA provided strong evidence that
size distributions maintained basically the same spatial patterns
from 1920 to 1990. Tree density increased by increasing
the number of pine groups, not their horizontal dimension.

Variogram models indicated that spatial dependence from
1920 to 1990 decreased more for stem increment than for

stem size. Increased density was associated with decreased
mean and variance of individual growth rates, as well as
with lower spatial dependence of stem size and increment.
In particular, BAI between 1980 and 1990 showed almost no
spatial dependence, indicating that trees grew at different
rates regardless of their proximity. Since growth variation was
less affected by intertree distance with greater local crowd-
ing, prediction of individual growth rates cannot rely on
intertree distances alone. We argue that increased tree den-
sity intensified competition for resources and that spatial
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patterns of stem increment were disrupted by competitive
interactions. In other words, our findings suggest that den-
sity-dependent limitation of tree growth does not necessar-
ily generate distance-dependent growth rates. For simula-
tion purposes, it was remarkable how well the same
variogram model could represent spatial dependence of stem
size at different spatial scales and over different time periods.
The Gaussian model, which portrayed spatial dependence
of tree DBH and BA over a large range of stand densities,
was both empirically and theoretically meaningful. Although
the features that distinguish spatiotemporal patterns of this
old-growth ponderosa pine forest need to be examined else-
where to determine their generality, finding other extensive
permanent plots that have been maintained since 1920 in
virgin forest may not be simple.
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